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The shape of the interface and pressure buildup for two-layered steady creeping flow inside a narrow
channel of variable topography are examined in this study. The flow is assumed to be induced by the translation
of the lower flat plate, similarly to lubrication flow. The interplay between channel topography and viscosity
ratio, R�, is emphasized, in the absence of interfacial tension and gravity. For contracting channel and in the
low R� range, the pressure increases everywhere in the channel monotonically with R�, reaching a maximum,
and decreases as R� is increased further. In contrast, the interface level increases monotonically with R�.
Channel modulation causes considerable pressure buildup. However, unlike the interface, which exhibits
modulation, the pressure distribution along the channel remains qualitatively unaffected.
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I. INTRODUCTION

Interfacial multilayer flows have received much attention
in the recent literature, for their importance in engineering
processes, such as coating, polymer extrusion, oil transporta-
tion, as well as for their fundamental importance. Due to
their industrial importance, many investigations have in-
volved the mathematical modeling of these processes as well
as studying the physical properties of the film as affected by
various processing conditions. Interfaces between two adja-
cent fluids are susceptible to various kinds of hydrodynamic
instabilities with different origins and diverse mechanisms of
growth. In this study, the steady creeping two-layer flow in-
side a channel of variable geometry is examined.

A variety of two-layer flow configurations have been ex-
amined in the literature, the most common being gravity-
driven flow of multilayered film on an inclined plane. �1�
Charru and Hinch �2� obtained phase diagrams of interfacial
instabilities in a two-layer Couette flow and suggested a
mechanism for the long-wave instability. They established
the critical level of flow conditions, namely, the flow rate or
pressure gradient, for the onset of instability in the form of
the fastest growing mode. They proposed a unified and more
physical viewpoint of the instabilities that may arise in two-
layer Couette flow. The instability of two-layer creeping flow
in a channel with parallel-sided walls was examined by
Pozrikidis �3�. A numerical calculation was performed for
two-layer channel Stokes flow subject to two-dimensional
perturbations, and the effect of the various geometrical and
physical parameters on the flow was examined. Later
Pozrikidis examined the gravity-driven creeping flow of two
adjacent layers through a channel and down a plane wall. �4�
The instability of two layers flowing through an inclined
channel that is open at both ends was examined for creeping
flow and in the absence of mean pressure gradient. Chen �5�
concluded that the deformability of the free surface was a
contributing factor in the growth of small perturbations and
attributed the unstable behavior to resonance between the
interface and free-surface waves. When the free surface is
maintained flat by infinite surface tension, the instability
does not appear.

Two-layer channel flows have been restricted to simple
geometry, mainly the flow in a straight channel. Flow in

variable channel geometry has, of course, been considered,
but for single-phase flow. For creeping flow, the problem
reduces to conventional lubrication flow. Most studies on
hydrodynamic lubrication examined nominal point and line
contact flows and concentrated on oil lubrication of Newton-
ian flow, �6,7� and non-Newtonian flow, such as those based
on the Eyring �8,9� and the power law �10� models. Grease
lubrication, which is based on relatively simple rheological
models such as Bingham fluids, has also been examined. �11�
The influence of inertia has also been assessed. The reader is
referred to the study by Zhou et al. �12� and references
therein for studies on the flow inside modulated channels,
and to Siddique and Khayat �13� for more general flow con-
figurations. More recently, Alba et al. �14� examined the in-
terplay between inertia and interfacial tension for the free
surface flow of two superposed fluids.

Despite the numerous studies devoted to two-layer flow,
significant questions remain unanswered. In particular, the
influence of the shape of channel on the interface and pres-
sure has not been investigated. The interplay between viscos-
ity ratio and channel topography is of fundamental and prac-
tical significance. In this paper, the behavior of two
superposed thin layers of immiscible fluids flowing steadily
through an arbitrary-sided walled narrow channel is exam-
ined in the absence of inertia. In particular, the influence of
viscosity ratio, channel contraction, and modulation on the
interface profile and pressure distribution will be empha-
sized.

II. PROBLEM FORMULATION AND SOLUTION
PROCEDURE

In this section, the two-fluid film flow configuration is
introduced, along with the prescribed governing equations
and boundary conditions. The lubrication assumption is
adopted for the formulation of the problem.

A. Governing equations and boundary conditions

Consider the steady two-layer lubrication flow of two in-
compressible Newtonian fluid layers of identical density in
the �X ,Y� plane. Let U, V, and P denote the velocity com-

PHYSICAL REVIEW E 79, 046326 �2009�

1539-3755/2009/79�4�/046326�8� ©2009 The American Physical Society046326-1

http://dx.doi.org/10.1103/PhysRevE.79.046326


ponents and pressure, respectively. The fluids are confined
between two rigid boundaries, the lower boundary, Y =0, be-
ing straight and moving at a velocity U0, and the upper
boundary being stationary and of variable height, Y =H�X�.
The bottom layer is layer 1 and the top layer is layer 2. The
viscosity of layer 1 is �1 and that of layer 2 is �2. The fluids
are assumed to enter the channel domain �0,L� from an in-
finite fluid pool at X=0 where each layer thickness is as-
sumed to be fixed. The interface height is given by y=E�X�.
Thus, E0=E�0� is the thickness or height of layer 1 and
H0=H�0� is the total thickness of both layers 1 and 2 or
height of the upper boundary at X=0. In this case, the thick-
ness of the top layer at X=0 is H0−E0. The two layers are
assumed to exit freely �into a pool� at X=L. The flow domain
is deliberately set to a finite length, which is typically the
case of lubrication flows �15�. Similar flow configurations
with finite domain are also encountered in manufacturing
processes such as calendaring, fiber spinning, and film cast-
ing. �16� In this work, L and E0 will be taken as the reference
length and depth, respectively, and �1 will be the reference
viscosity. Note that E0 and H0 are assumed to be of the same
order of magnitude. For a thin film, L�E0 or H0. In this
case, the aspect ratio �=E0 /L�1 and will be used as the
small parameter in the problem.

Following the usual procedure in lubrication or thin-film
flow theory, one introduces dimensionless coordinates, x and
y, scaled by L and E0, respectively, and the corresponding
velocity components, u and v, scaled by U and E0U /L, re-
spectively. In this case, an adequate scale for the pressure, p,
is �−2�1UL−1. The nondimensional interface and upper
boundary heights are denoted by ��x� and h�x�, respectively.
More explicitly, the dimensionless variables are given by

x =
X

L
, y =

Y

E0
, u =

U

U0
, v =

V

�U0
, p =

�2L

�1U0
P ,

� =
E

E0
, h =

H

E0
. �1�

In the absence of gravity and interfacial tension effects, the
similarity parameters for the problem are the aspect ratio, �,
viscosity ratio, R�, height ratio, RH, and the Reynolds num-
ber, Re, which are introduced as

� =
E0

L
, R� =

�2

�1
, RH =

H0

E0
, Re =

�U0L

�1
. �2�

The effects of surface and interfacial tensions were examined
recently for two-layer film flow by Alba et al. �14� Note RH
is the ratio of the thickness of the entire film to that of the
lower layer at x=0, and RH�1. The problem is examined in
the �x ,y� plane and is illustrated schematically in Fig. 1.
Here x� �0,1�. Recall that the lower plate remains straight
and moves at a normalized unit speed. Upon casting the gov-
erning equations in dimensionless form, the continuity equa-
tion retains its original form in each layer to read

ux + vy = 0, �3�

and holds in layer 1 �0�y��� and layer 2 ���y�h�. A
subscript with respect to x or y denotes partial differentiation.

The conservation of linear momentum equation, on the other
hand, is significantly simplified given the small thickness-to-
length ratio ���1� for a thin layer. In this case, the viscous
elongational terms are dropped for each layer. The
y-momentum equation reduces to its hydrostatic part, which
in turn suggests, for negligible gravity and interfacial ten-
sion, that the pressure simply remains constant across the
channel, but varies streamwise. In this case, the streamwise
momentum equation in layers 1 and 2 takes the respective
form

�2 Re�uux + vuy� = −
dp

dx
+ uyy, 0 � y � � , �4a�

�2 Re�uux + vuy� = −
dp

dx
+ R�uyy, � � y � h . �4b�

Clearly, unless Re=O��−2� or higher, inertia is negligible.
For most lubrication flow problems one expects Re to remain
of O�1� or smaller given the heavily viscous fluids used. In
this case, inertia is of O��2� or smaller and will therefore be
neglected in this work. Consequently, Eqs. �4a� and �4b� re-
duce, respectively, to

uyy�x,0 � y � �� = px, �5a�

uyy�x,� � y � h� =
px

R�

. �5b�

Equation �5� must be integrated subject to the no-slip condi-
tions at the rigid boundaries

u�x,y = 0� = 1, u�x,y = h� = 0, �6�

and the continuity of flow and traction at the interface:

u�x,y = �−� = u�x,y = �+� , �7a�

uy�x,y = �−� = R�uy�x,y = �+� , �7b�

where �− and �+ are positions just below and just above the
interface, respectively. Note that given the absence of inertial
and elongational terms, no partial derivatives of u with

�(x)

h(x)

y

x0

POOL

INTERFACE

FLUID 2

FLUID 1

RH

1

1

FIG. 1. Schematic illustration of the flow configuration for two-
layer fluid and dimensionless notation used.
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respect to x appear. Consequently, there is no need to impose
any boundary conditions on u at x=0 or x=1. On the other
hand, boundary conditions are required on the pressure,
which will be specified shortly.

Upon noting that the pressure only depends on x, the
streamwise velocity component, u, across each fluid layer, is
obtained by integrating Eqs. �5a� and �5b�, and using condi-
tions �6� and �7�, to give

u�x,0 � y � �� =
1

2

dp

dx
y2 +

��2� − 2h − R���� − R�
2 �� − h�2�

dp

dx
− 2R�

2�R�� − � + h�
y + 1, �8a�

u�x,� � y � h� =
Rpx

2
�y2 − h2� + ���2�1 – 2R2 + R� − Rh2�px − 2�

�y − h�
2�R� − � + h�

. �8b�

The interface height is dictated by the kinematic condition

v�x,y = �� = u�x,y = ���x, �9�

where v�x ,y� is next determined at y=� upon integrating the
continuity Eq. �3� over the interval y� �0,�� and using ex-
pression �8a�. In this case, the kinematic condition takes the
following form:

d

dx
�dp

dx
�3 + 3�A

dp

dx
+ B	�2 + 6�
 = 0, �10�

where A�� ,h�=
�2�−2h−R����−R�

2 ��−h�2

2�R��−�+h� and B�� ,h�=−
R�

R��−�+h .
A second relation can be obtained between the volume flux
across the channel, Q, and the pressure gradient, namely,

dp

dx
=

6

C��,h�
��1 − R���� − 2Q�� − h2 + 2Qh� , �11�

where

C��,h� = �R� − 1�2�4 − 2�3R�
2 − 2R� − 1�h�3

+ �9R�
2 − 6R� − 3�h2�2 − 4R��R� − 1�h3� − R�h4.

The boundary conditions relevant to the problem are ob-
tained by specifying the level of the interface at inception
and noting that the pressure must vanish at the two ends of
the flow domain. Thus,

��x = 0� = 1, �12a�

p�x = 0� = p�x = 1� = 0. �12b�

An expression for Q is obtained implicitly in terms of �
upon integrating Eq. �11� between 0 and 1 and applying the
two conditions on pressure from Eq. �11�. Hence,

Q =
1

2
�

0

1 ��R� − 1��2 + h2�dx

C�h,�� ��
0

1 ��R� − 1�� + h�dx

C�h,��
.

�13�

Once the pressure gradient, interface height, and flow rate
are obtained, the streamwise and depthwise velocity compo-
nents can also be determined. This is detailed next.

B. Solution procedure

Two solution alternatives to obtain p, �, and Q from Eqs.
�10�, �11�, �12a�, �12b�, and �13� are worth discussing here.
The first method consists of eliminating the pressure gradient
between Eqs. �10� and �11� and substituting for Q from Eq.
�13� to obtain an integral equation for �, which can be solved
subject to the first condition in Eq. �12�. This can be done by
first integrating Eq. �10� to give

�2�� + 3A�
dp

dx
+ 3B�2 + 6� = �1 + 3A0�

dp0

dx
+ 3B0 + 6,

�14�

where A0=A��=1,h=RH� and B0=B��=1,h=RH�. Also
dp0

dx = dp
dx ��=1,h=RH� from Eq. �9�. Next, the pressure gradi-

ent is eliminated between Eqs. �11� and �14�, and Q is sub-
stituted from Eq. �13� to finally lead to an integral equation
for �, namely,

�
0

1 ��R� − 1��2 + h2�dx

C�h,��
= D��,h��

0

1 ��R� − 1�� + h�dx

C�h,��
,

�15�

where

D��,h� =

�R� − 1��2 + h2 + ��1 + 3A0�
dp0

dx
+ 3�B0 − B�2� + 6�1 − ��
 C��,h�

6�2�� + 3A�
R�� − � + h

.
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Given the strong nonlinearity involved in Eq. �15�, an itera-
tive process must imminently be used. In this case, a good
initial guess is required for the solution to converge.

The second approach, which is the one adopted here, con-
sists of setting up the problem as a differential system. Upon
carrying out the differentiation in Eq. �10�, and eliminating
the pressure gradient using Eq. �11�, the following equation
is obtained for the interface height:

d�

dx
=

E��,h,Q�
F��,h,Q�

, �16�

where

E��,h,Q� = 2�2��� + 3A�Ch − 3CAh�

	��1 − R���� − 2Q�� − h2 + 2Qh�

− C�2�Bh − 4�� + 3A��Q − h�� ,

and

F��,h,Q� = 2�6AC� + 3C�1 + A���2 − �2�� + 3A�C��

	��1 − R���� − 2Q�� − h2 + 2Qh�

+ 4�R� − 1�C�� + 3A��Q − ���2 + 2BC�

+ B�C�2 + 2.

Since Q is still unknown, Eq. �16� cannot be solved sepa-
rately. In addition, the existence of only one boundary con-
dition on �, Eq. �12a�, and two conditions on the pressure,
Eq. �12b�, forces the problem to be solved as a coupled sys-
tem. Thus, Eqs. �11� and �16� are solved together subject to
conditions �12�. The third boundary condition allows the de-
termination of Q. A variety of solution methods can be ap-
plied to solve the �eigenvalue� problem as an initial-value
problem. Similar problems emerge in other physical systems
involving moving boundaries, such as fiber spinning �17,18�
and film casting. �15,16� Gelder �17� solved the problem by
using a finite-difference approximation, while Fisher and
Denn �18� applied a Runge-Kutta method, combined with a
shooting technique. In the current study, however, the prob-
lem is solved as a two-point boundary-value problem. �16� In
this case, Q is regarded as a third dependent variable, al-
though it is a constant.

In summary, the equations to be solved are Eqs. �11� and
�16�, subject to conditions �12�. The resulting two-point
boundary-value problem reads

d�

dx
=

E��,h,Q�
F��,h,Q�

,

dp

dx
=

6��1 − R���� − 2Q�� − h2 + 2Qh�
C��,h�

,
dQ

dx
= 0,

�17a�

��x = 0� = 1, p�x = 0� = p�x = 1� = 0. �17b�

Problem �17� is solved using a variable-order, variable-step
size finite-difference scheme with deferred corrections. The
basic discretization is the trapezoidal rule over a nonuniform
mesh. The mesh is chosen adaptively, to make the local error

approximately the same size everywhere. Higher-order dis-
cretization is obtained by deferred corrections. Global error
estimates are produced to control the computation. The re-
sulting nonlinear algebraic system is solved using Newton’s
method with step control. The linearized system of equations
is resolved by a special form of Gauss elimination that pre-
serves sparseness.

III. DISCUSSION AND RESULTS

The discussion will focus on the influence of viscosity
ratio and channel topography. The two fluid layers are as-
sumed to have the same thickness at the entrance to the chan-
nel so that RH=2. Two flow configurations of the Reynolds
bearing type will be examined, both involving a straight
moving lower plate and an upper inclined boundary. In the
first configuration, the upper plated is straight, and in the
second it is spatially modulated with mean height corre-
sponding to the straight case. In both cases, the flow is con-
tracting.

A. Reynolds-bearing flow with straight upper boundary

Consider the two-layer Reynolds-bearing flow, which
consists of the two fluids flowing inside in a channel of lin-
early varying width. The upper plate decreases linearly with
x, and the lower plate is straight. In this case, h�x�=RH+Sx,
where S is the �negative� slope. Figure 2 displays the inter-
face height and pressure distributions, for the range of vis-
cosity ratio R�� �0.1,10�, RH=2 and S=−1 /3. The pressure
displays a maximum at some location, for any viscosity ratio,
which is expected in lubrication flow. The location of the
maximum is closer to flow inception �x=0� for the stronger
pressure profiles. The interface height is always monotoni-
cally increasing with x.

The influence of the viscosity ratio on the pressure and
interface height is somewhat intricate. Figure 2 indicates
that, while ��x� decreases monotonically as R� increases,
p�x� increases, reaching a maximum, then decreases with
viscosity ratio. The maximum pressure distribution �not
shown, but see Fig. 5� is reached at R�0.3. Thus, two
distinct regimes appear to be discernible. The first regime of
low viscosity ratios �R�
0.3�, corresponding to the pre-
maximum range. In this range, the interface exhibits negative
concavity. While the pressure increases strongly with R�, the
interface height decreases significantly, which is reflected in
the jump between the curves corresponding to R�=0.1 and
0.5. As the maximum in pressure is reached, ��x� grows
linearly with x and changes concavity as R� increases be-
yond 0.3. Note that the pressure reaches maximum at every x
location. The second regime thus corresponds to the post-
maximum range of viscosity ratios �R��0.3�, in which both
the pressure and interface decrease monotonically with R�,
to eventually reach, respectively, p�x�=0 and ��x�=1 as
R�→�. In this case, basic Couette flow is recovered,
whereby fluid 1 continues to flow, while layer 2 becomes
essentially solid and remains stationary, like a rigid plate.
Note that the case R�=1 corresponds to a homogeneous
�one-layer� lubrication flow, which is recovered by the
present calculation.
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Figure 3 displays the profiles of the horizontal velocity
component at different x positions between 0 and 1 for the
contracting channel and R�=0.5. The velocity tends to dis-
play essentially everywhere a Couette character above the
interface, linearly decreasing with y, and becoming nonlinear
with y below the interface but not changing significantly
with x. Another quantity of interest, easily inferable from the
profiles in Fig. 3 is the coefficient of friction or shear stress.
It is expected that as the flow contracts with x, the shear
stress increases. This seems to be indeed the case only at the
stationary upper boundary. At the moving flat plate the shear
stress decreases with x.

The pressure profiles displayed in Fig. 2 are of course
typical of the pressure buildup experienced in lubrication
flow. However, this quasiparabolic behavior is not always
predicted for any viscosity ratio. Indeed, a significant devia-
tion occurs at very low viscosity ratio. Figure 4 shows the
pressure profiles for R�� �0.001,0.1�. As the viscosity ratio
decreases from 0.1, the pressure begins to exhibit an inflex-
ion point, which is located further downstream as R� de-
creases. Moreover, the pressure becomes negative close to
the entrance �x=0�, reflecting a region of expansion relative
to the entrance �pool or atmospheric� condition. As R� fur-
ther decreases, the pressure becomes negative everywhere.
The interface �not shown� gradually deviates from the linear

profile, continually increasing as R� decreases. In particular,
a sharp gradient develops near the exit. This is the swell
effect that is typical of exiting jets.

The pressure buildup with viscosity ratio displayed in Fig.
2 is reminiscent of phase transition and critical phenomena,
particularly the case of binary mixtures. �19� The overall
picture is further clarified from Fig. 5, which shows the de-
pendence of maximum pressure, pmax, its location, xmax, and
the flow rate, Q, on the viscosity ratio. The pressure maxi-
mum increases sharply with R� in the low viscosity range,
occurring closer to the exit, reaching a maximum, and de-
creases asymptotically to zero as R� tends to infinity. In anal-
ogy to binary mixture, the pressure maximum can be com-
pared to the temperature, and the viscosity ratio to the
concentration ratio. In this case, the small �high� viscosity
range for pmax is comparable to the precritical �postcritical�
temperature range. The location, xmax, appears to level off for

FIG. 2. Influence of viscosity ratio, R�, on the interface height,
��x�, and pressure, p�x�, for a linearly contracting channel with
lower straight plate. Here R�� �0.1,10�, RH=2, and S=−1 /3.
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FIG. 3. Horizontal velocity profiles at different x positions for a
linearly contracting channel with lower straight plate. Here
R�=0.5, x� �0,1�, RH=2, and S=−1 /3.

FIG. 4. Pressure distributions in the low-viscosity range for a
linearly contracting channel with lower straight plate. Here
R�� �0.001,0.1�, RH=2 and S=−1 /3.
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R��2. Similarly to the Gibbs free energy of binary mix-
tures, xmax displays extrema �a strong minimum and a weak
maximum�. In contrast, the flow rate decreases monotoni-

cally with R� �rather sharply at small R��, and reaches the
value of 0.5 at large R�, which corresponds to the Couette
flow of one-fluid layer through a unit gap. It is interesting to
finally observe from Fig. 5 that there exists an optimal vis-
cosity ratio, which is less than one �approximately 0.3�,
which gives a maximum pressure buildup. This result is of
course of important relevance to lubrication flow.

The influence of the slope, S, of inclination of the upper
plate is illustrated in Fig. 6 for R�� �0.5,4�. In this range of
viscosity ratio, both pmax and Q decrease monotonically with
R�. Generally, and as expected, pmax increases sharply with
inclination, while Q decreases. However, at large R�, the
behavior of the pressure, and particularly that of the flow
rate, is linear with R�. The location of the maximum in pres-
sure, xmax, is generally further downstream for higher incli-
nation.

B. Modulated Reynolds-bearing flow

Consider next the flow when the upper boundary is spa-
tially modulated in addition to being inclined, such that
h�x�=RH+Sx+A sin�2�x�, where A and  are the modula-
tion amplitude and wave number. The flow response is typi-
cally illustrated in Fig. 7, where p�x� and ��x� are plotted for

FIG. 5. Dependence of maximum pressure, pmax, its location,
xmax, and the flow rate, Q, on the viscosity ratio for a linearly
contracting channel with lower straight plate. Here R�� �0.1,10�,
RH=2, and S=−1 /3.

FIG. 6. Dependence of maximum pressure, pmax, its location,
xmax, and the flow rate, Q, on the slope for a linearly contracting
channel with lower straight plate. Here R�� �0.1,10� and RH=2.

FIG. 7. Influence of viscosity ratio, R�, on the interface height,
��x�, and pressure, p�x�, for a linearly contracting and modulated
channel with lower straight plate. Here R�� �0.1,10�, RH=2,
S=−1 /3, A=0.2, and =1.

ROGER E. KHAYAT AND GUOWEN TIAN PHYSICAL REVIEW E 79, 046326 �2009�

046326-6



RH=2, S=−1 /3, A=0.2 and =1. The interface adopts a
profile that is out of phase with the boundary modulation. In
other words, the interface is higher �lower� where the chan-
nel contracts �expands�. Interestingly, there is a knot ��=1�,
which occurs at the same location �x0.4� regardless of the
viscosity ratio, and does not coincide with a pressure extre-
mum. In contrast to the interface height, the pressure is little
affected by the modulation, at least qualitatively. Compari-
son between Figs. 7 and 2 indicates, however, that the pres-
sure buildup has more than doubled as a result of the modu-
lation. In addition, the location of the pressure maximum
does not appears to follow a definite trend when R� is varied,
in contrast to the case when modulation is absent.

Further assessment of the influence of modulation is
drawn from Figs. 8 and 9, where pmax, xmax and Q are plotted
against A and , respectively, for R�� �0.5,4�. Generally,
the maximum in pressure appears to increase linearly with A,
except at small viscosity ratio �R�
1�, where the increase is
faster for large A. The location of the pressure maximum
decreases with A, reaching a minimum, and increases mono-
tonically thereafter. The flow rate decreases monotonically
with A. Figure 8 thus indicates that the modulation amplitude
tends to prohibit flow causing pressure buildup. Consider
finally the influence of , which is inferred from Fig. 9 for

A=0.2. The maximum in pressure appears to experience a
minimax behavior as the wave number varies, whereas the
flow rate exhibits only a localized maximum. The effect of
modulation appears to subside in the limits of small and large
wave numbers.

IV. CONCLUDING REMARKS

The planar lubrication flow of two-layer film is examined
theoretically in this study. The conservation equations are
integrated across each layer, and the problem is reduced to a
coupled nonlinear ordinary differential system of the two-
point boundary-value type for the pressure, interface height,
and flow rate. The flows inside contracting straight and cor-
rugated channels are investigated. The flow is assumed to be
induced by the translation of the lower flat plate.

For contracting flow, it is found that two regimes exist as
far as the influence of the viscosity ratio, R�, is concerned. In
particular, the shape of the interface and pressure buildup are
determined. In the low R� range, the pressure increases with
viscosity ratio, everywhere in the flow domain to reach a

FIG. 8. Dependence of maximum pressure, pmax, its location,
xmax, and the flow rate, Q, on modulation amplitude for a linearly
contracting and modulated channel with lower straight plate. Here
R�� �0.5,4�, RH=2, S=−1 /3, and =0.2. FIG. 9. Dependence of maximum pressure, pmax, its location,

xmax, and the flow rate, Q, on modulation frequency for a linearly
contracting and modulated channel with lower straight plate. Here
R�� �0.5,4�, RH=2, S=−1 /3 A=1.
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maximum at some R�. As R� increases further the pressure
decreases from its maximum level. For spatially modulated
channel �around a mean inclined plate�, the pressure behaves
nonmonotonically with respect to the amplitude and wave
number of channel modulation. Considerable pressure
buildup and decrease in flow rate are predicted as a result of
modulation alone. While the interface exhibits a modulation
that is out of phase with boundary modulation, the pressure
remains qualitatively unchanged.

The current formulation and solution methodology consti-
tute a general and reliable framework for the modeling of
two-layer lubrication flow. Other flow configurations, includ-
ing other geometries and fluid parameters, are easily tackled,
of relevance not only to lubrication flows in mechanical sys-
tems but also to physiological systems. The focus in this
work is deliberately placed on the pressure distribution and
its dependence on viscosity ratio. The primary objective of a
lubricant is to keep the two rigid boundaries from coming in
contact with one another. This is achieved through the action
of the normal force, which consists essentially entirely of a

pressure component since other normal stress contributions
are essentially absent given the predominantly shearing char-
acter of lubrication flow. In this regard, another quantity of
interest is the friction coefficient, which is easily determined
or even inferred from the velocity profiles as in Fig. 3. The
current results clearly show the sensitivity of the pressure to
viscosity ratio variation. This can be of direct relevance, for
instance, to two-layer lubrication in human synovial joints,
where the mechanism of the carrying load is found to be very
sensitive to the ratio of layer properties. �20� Understanding
the interdependence of the normal and tangential force com-
ponents is clearly crucial to the design of an effective lubri-
cation process. The addition of another layer seems to alter
significantly the flow behavior. Figure 3 shows, for instance,
that the friction coefficient increases with position x at the
upper stationary boundary, but, in contrast to one-layer film
flow, decreases with x at the moving lower plate. Thus, the
“wear and tear” or erosion will not happen uniformly at the
two boundaries.
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